

CI/CS 2012 Spring Technical Meeting May 13 - 16, 2012 University of Toronto

# Comparative Study for Biodiesel Properties and Standards for Gas Turbine

Mina Youssef, Joachim Agou, Bernard Paquet, and Alain de Champlain



Combustion Research Laboratory Laval University Quebec City

# **OVERVIEW**

What is Biodiesel?

- Definition
- Production

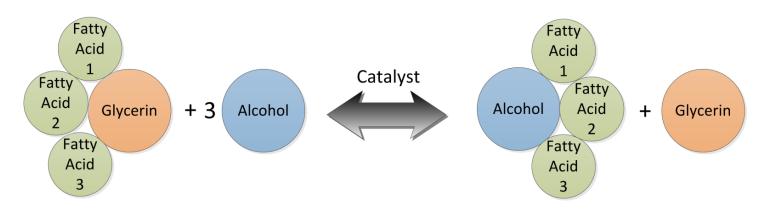
**Biodiesel Properties** 

- Free Fatty Acid
- Fuel Properties

Fuel Standards and Regulation

- ASTM Standards
- Consensus issues

**Emissions** 


- Major tendencies
- Limited data

Conclusion

• Future Improvements?

## What is Biodiesel?

- Fuel composed of mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal fats
- Biodiesel is made through a chemical process called trans-esterification, whereby the glycerin is separated from the fat or vegetable oil
- Fatty Acid Alkyl Esters = FAAE = Biodiesel



## **Biodiesel Production Basic**

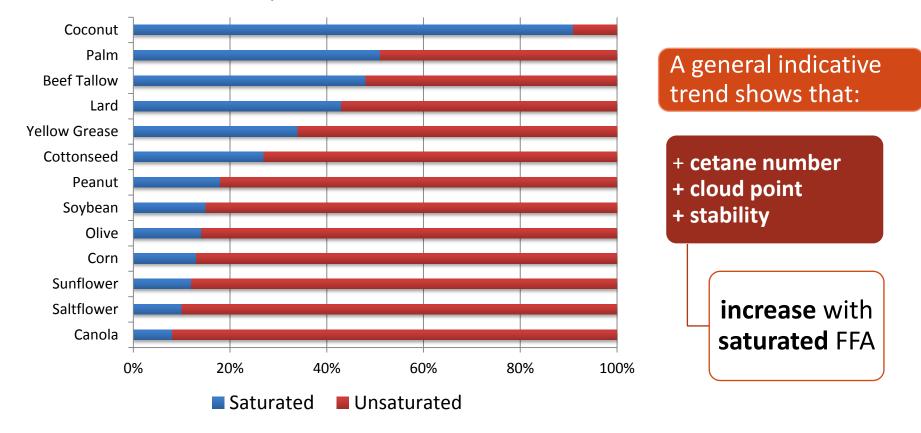
- FAME = Fatty Acid Methyl Ester if methanol is used as an alcohol during the process
  - \* FAME is widely produced due to the low price of methanol
- FAEE = Fatty Acid Ethyl Ester if ethanol is used as an alcohol during the process
- Biodiesel blends are denoted as, "BXX" with "XX" representing the percentage of biodiesel contained in the blend
  - ❖ B20 is 20% biodiesel and 80% petroleum diesel
- Fatty Acids (FA) structure and composition should determine the final properties of the biodiesel (?)

### BIODIESEL PROPERTIES OUTLINE

Free Fatty Acid (FFA) percentage and influence

FFAs Vs. Feedstock

Main fuel properties impacted by the Fatty Acid profile


- Viscosity
- Surface Tension
- Cetane number
- Heat of combustion
- Cold flow properties
- Oxidative stability
- Lubricity

## Free Fatty Acid (FFA) influence

- Type and structure of the fatty acid esters present in biodiesel both play an important role
- Structural features that influence biodiesel properties are:
  - Fatty acid chain length
  - Degree of un-saturation
  - Branching of chains (chemical bonds)

## Feedstock Vs. FFA

 Shown below an approximative trend of the composition of FFA with respect to their feedstock



## **Viscosity & Surface Tension**

Higher viscosity & surface tension than petroleum based diesel

- Increase with degree of saturation
- Increase with chain length
- Double bond configuration decrease viscosity

Negative impact on atomization and spray

- Sauter Mean Diameter (droplet size)
- Evaporation rate
- Combustion efficiency
- Pollution

## **Cetane Number**

Higher cetane number than petroleum based diesel

Decrease with decreasing chain length

Decrease with increasing double bond configuration

Positive impact on ignition

Reduce ignition time delay

Reduction NOx
emissions\*
(depending on the
degree of un-saturated
acid)

Too high cetane number leads to incomplete combustion and smoke emissions

## **Biodiesel Properties**

#### **Heat of Combustion**

- Increases with the chain length
- Fatty esters contribute up to 90% of heat of combustion in diesel fuel no.2

#### Oxidative Stability

- Changes in biodiesel properties with longer storage duration
- Autoxidation is due to the presence of double bonds
- Rate of autoxidation dependent on the number and the position of double bonds

# **Biodiesel Properties (Cont.)**

#### Cold flow properties

- Higher CP and PP than conventional diesels
- High saturated fatty % will display higher CPs and PPs
- Negative impact it can clog the fuel filters and damage the fuel pump
- Blending biodiesel in a higher portion decrease the CP and PP

#### Lubricity

- No significant effect (due to fatty acid composition)
- Unsaturated acids exhibits a better lubricity than saturated
- Restore fuel lubricity by mixing biodiesel to the low sulfur petroleum-derived diesel

#### STANDARDS AND REGULATION OUTLINE

#### **ASTM**

- Biodiesel
- Aviation Gas Turbine
- Stationary Gas Turbine

Adequacy and precision of some test methods

#### Consensus issues

## **Standards and Regulation**

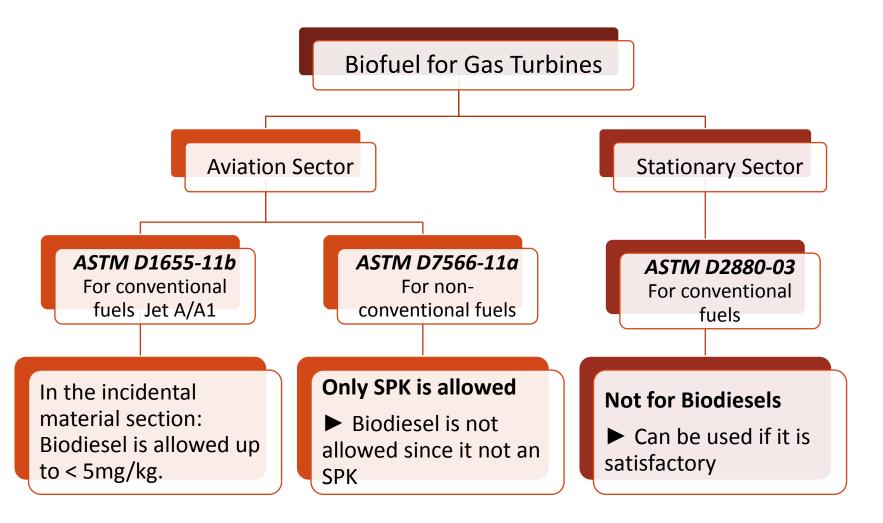
Biodiesel must meet certain specifications in order to be certified as fuel.

Almost all specification found for biodiesels:

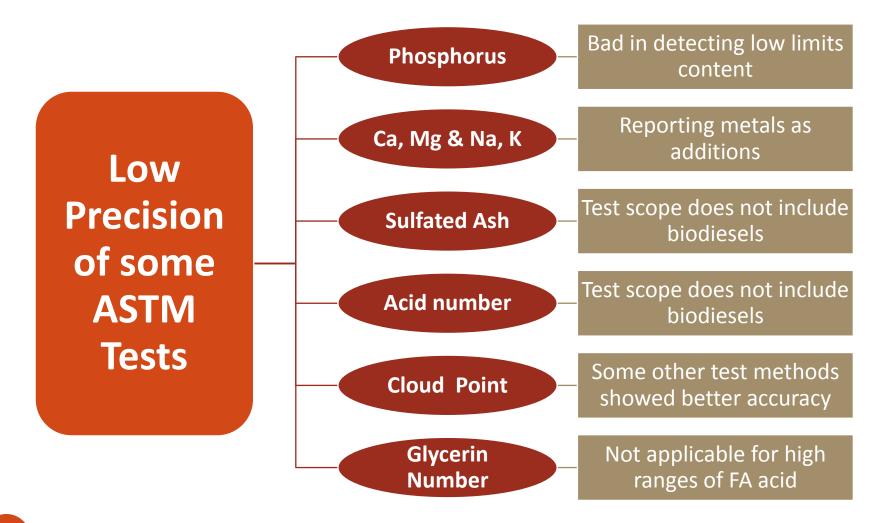
ASTM D6751-11b

• Specifications for pure biodiesels (B100)

ASTM D396-10  Specifications for conventional fuel oils used for home heating and industrial boilers application (B1 to B5)


ASTM D975-11b

 Specifications for diesel fuel oils used for on-and off- road diesel applications (B1 to B5)


**ASTM D7467-10** 

 Specifications for diesel fuel oils and biodiesel blends (B6 to B20)

# Standards of Biodiesels for Gas Turbines applications



## **Adequacy and Precision of Standards**



## **Reliable Calibration?**

#### Calibration of **NON-ASTM** test methods

- EN 14538 : For the determination of Ca , Mg & K , Na
- EN 15751: For the determination of the oxidation stability
- EN 14110: For the determination of the methanol content
- ✓ Test Performance Index (TPI)

| >1.2    | Satisfactory                                 |
|---------|----------------------------------------------|
| 0.8-1.2 | Improvement should be considered             |
| >0.8    | Inconsistent to the ASTM precision statement |

Some Biodiesel tests found inconsistent < 0.8</p>

## **EMISSIONS OUTLINE**

### Few Examples

Experimental Studies

## Major tendencies

- CO
- NOx
- UHC
- Smoke emission

#### Limited amount of reliable data?

# Impact on the NOx emissions in Gas Turbines

# NO improvement

- Exp.1: RR-T56-A-15 test rig combustor
  - Not preheated
  - High SMD and Low evaporation rate

#### **NOx Reduction**

- Exp.2: Air blast atomizer with a heated co-flow air
- Exp.3: Pressure atomizer + preheated fuel
  - Reduction in viscosity
  - Low SMD (droplet size)
  - Higher evaporation rate

# Impact of properties on the Soot formation

# General trend shows reduction of Soot, CO, and UHC emissions

- Presence of O2 molecules in the fuel composition
  - → Encourage the combustion, hence low emission
- Absence of aromatic rings
  - Exp.1: RR-T63-A-700 (Helicopter engine)
  - **Exp.2**: Air blast atomizer with a heated co-flow air
  - **Exp.3**: Pressure atomizer and the blend was preheated

## Lack of reliable data?

- Information regarding the use of biodiesel in gas turbines is limited
- The lack of reliable data about the emissions of CO, NOx, UHCs, and soot provokes divergent thinking

Difference in combustion mode, equivalence ratio, pressure & temperature ratios

C.I. Engines

Gas Turbine

High blends → High NOx

High Blends → NOx ???

## **Biodiesel Advantages**

Reduction of Greenhouse gas emission

Non-toxicity

Biodegradability

Safer to handle

Can be produced virtually from any type of oil or fat

## **Future improvements**

Cold weather operation

Specific calibration standards for biodiesel

Specification for higher blending levels

Producing enough feedstock oil to replace a large portion of petroleum (biology, chemistry, physics, economics)

Legislative efforts can make technological advancement more economical while the industry develops (public policy)

# Thanks for your attention.

Any questions?