

Emission Measurements of Various Biofuels using a Commercial Swirl-Type Air-Assist Dual Fuel Injector

Joachim Agou, Alain deChamplain, and Bernard Paquet

CI/CS 2013 Spring Technical Meeting Université Laval, Quebec City May 13-16, 2013

Test Program

Introduction

Overview

A joint university-industry research program

Funded by Rolls-Royce Canada, CRIAQ, NSERQ, and MITACS

Pursued at Université Laval Combustion Laboratory "Characterize the combustion performance"

of liquid and gaseous biofuels

on a generic combustor **Baselines & Biofuels**

standard diesel as a baseline

biodiesel blends standard methane as baseline 10 s**yngas blends**

Test Program 5/15/2013

Fuels Characteristics

Liquid Fuels	Diesel No.2 (% vol.)			Bio-diesel (% vol.)		
Diesel (baseline)	100			0		
B20	80			20		
B50	50			50		
B100	0			100		
Gaseous Fuels	H2/CO ratio	CO (% vol.)	H2 (% vol.)	CH4 (% vol.)	CO2 (% vol.)	N2 (% vol.)
Methane (baseline)		0	0	100	0	0
B1	-	0	0	60	40	0
S1	0.5	50	25	0	25	0
S2	1	37.5	37.5	0	25	0
S3	2	25	50	0	25	0
S4	0.5	50	25	5	20	0
S5	1	37.5	37.5	5	20	0
S6	2	25	50	5	20	0
S14	1	42.5	42.5	0	15	0
S5M50	1	18.75	18.75	52.5	10	0
S5M25	1	28.125	28.125	28.75	15	0

Test Program 5/15/2013

What has been measured?

Gaseous emissions

Smoke (SN)

Temperatures

Ignition

Flame stability

Lean blowouts (LBO)

Test Program 5/15/2013

Experimental Setup

Test Rig and Instrumentation

Custom Test Rig

Experimental Setup 5/15/2013

Instrumentation

- A probe connected to a gas analyzer system and a smoke sampler mounted on a 3D-axis traverse that allow displacement.
 - Samples of combustion products are drawn in a cross pattern at the combustor exit.
 - > 5 different radial positions to get an emission profile at exit plane.
- Burned gas temperature was measured at the center of the exit plane
 - Wall temperatures were measured at several locations along the test rig
 - All measurements with type-K thermocouples.

Experimental Setup 5/15/2013

Smoke & Emission Equipment

Smoke Measurement

- A designed smoke sampler.
- Smoke Number (SN) determination via SAE procedure found in ARP 1179.
- Soot samples collected by passing a predetermined volume of exhaust sample through paper filter via heated lines to prevent condensation.
- Reflectometer is used to measure reflectance of clean & stained filter to calculate smoke number (SN).

Experimental Setup 5/15/2013

Smoke & Emission Equipment

Gasmet™ CEMS – Gas Analyser

- Continuous Emission Monitoring System (CEMS)
- Fourier Transform InfraRed (FTIR) technology
- Simultaneous analysis up to 35 gaseous substances (extensible library)
- H2O, CO2, CO, SO2, NO, NO2, N2O, HF, NH3, O2, O3, many HC volatiles ...
- No diatomic molecules (O2 and noble gases)

FID - UHC Analyzer

- Flame Ionization Detector (FID)
- Total hydrocarbon analyzer
- High accuracy with Hydrocarbons

ZrO2 – Oxygen Analyzer

• Only O2

Lights off ...

Pictures 5/15/201

Biofuels Combustion

5/15/2013

Results & Discussion

Emissions vs. Equivalent ratio

Water Vapor & Carbon Dioxide

- Concentrations increase with equivalent ratio.
- Good agreement with theoretical trends.
- H₂ & CH₄-composed fuels generate greater amount of water vapor.

Oxygen O2 (Zr-O₂)

- Concentration decrease to 0% with equivalent ratio reaching stoichiometric φ.
- Gaseous fuels follow closely theoretical trends.
- Liquids fuels give slightly higher concentrations
 - Suggest local excess air
 - O₂ calculated, not measured
 - Carbon/O₂ balance
 → add uncertainty

Nitrogen Oxides (NO_x)

- $NO_x = NO + NO_2$
- T>>1500°C → Thermal NO formed in large quantities
- NO is found to peak to close to fuel-lean side of stoechiometric ϕ
- NO production declines very rapidly as temperatures are reduced at low φ
- CO₂ reduces peak flame temperature
- Liquid fuels drops: potential for nearstoichiometric combustion temperature

Carbon Monoxides (CO)

- CO = Inefficient mixing and/or incomplete combustion.
- Significant amount of CO due to dissociation of CO₂ close to stoichiometric φ.
- CO arises from incomplete combustion at low φ → inadequate burning rate and/or unsufficient residence time.
- Liquid fuels emissions increase while φ increase
 → Mean drop size affects evaporation → high volume occupied by evaporation = less available volume for chemical reaction.

Unburned Carbons (UHC) and Soot

- UHC = unburned fuel (drops or vapor)
- UHCs → Poor atomization and/or inadequate burning rate.
- Relatively low UHC for all gaseous fuels → high swirl capabilities = Good air/fuel mixing.
- Liquid Fuels limitations: droplets impingements on combustor wall interfered combustion
 High soot generation!
 - Soot = Solid carbon

Conclusions and Recommendations

Experimental issues Wobbe index

Almost there ! 5/15/2013

Summary and Conclusions

Characterize alternate liquid & gaseous fuels on a generic combustor

- Emissions & smoke measurement.
- Operability indicators.

Test rig not fully adequate for liquid fuel combustion

- Massive droplet impingements.
- Intermediate size quartz tube ?
- High accumulations of black soot along the quartz tube wall.

Working conditions far from real conditions in gas turbine

- Only the primary zone was simulated.
- Missing feed holes in the liner that promote mixing and prevent droplets from reaching combustor wall.

Summary and Conclusions

Gaseous fuel emissions

- Much simpler combustion process.
- Almost no soot.
- S3 and S6 seem the most promising fuel regarding:
 - Relatively low NOx, CO and UHCs emissions generated.
 - Very competitive Wobbe Index compared to baseline.

Thank you for your attention.

- Any questions ?
- Contact me at j@agou.ca

Finally ! 5/15/2013

5/15/2013

Back up slides

Sulfur Species (SO₂)

- Primary sulfur component in syngas is hydrogen sulfide.
- Biofuels nearly sulfur-free
 → relatively low sulfurous emissions.
- Sulfur species are oxidized primarily to SO₂.
- Some of SO₂ undergoes further oxidation to SO₃.
- Partitionning between SO₂ and SO₃ and reduced species depends on the combustor performance and gas mixing .

